Design and Implementation of a Safety-Critical Application
Targeting Modular Certification

Andreas Platschek and Nicholas Mc Guire
OpenTech EDV Research GmbH
A-2193 Bullendorf, Augasse21
<andi@opentech.at>, <der.herr@hofr.at>

Abstract

Modular Certification promises to allow the reuse of already certified applications as well as co-located
non-safety related applications, by showing the independence of the application from other software
employed on the system. While most publications focus on the operating system that guarantees the
independence of applications, this paper takes a detailed look at the life-cycle of the application and
how the development of such an application differs from developing a software application in a federated
architecture.

In order to get an idea of how feasible an actual modular certification is, this paper starts off by
analyzing the landscape of standards that support modular certification. This short summary of standards
is followed by a generic analysis of the problems arising when going for a modular certification as well
as the potential advantages gained. The rest of the paper presents a real-world example for designing
and implementing a typical application of the automotive domain (an indicator control system) into an
integrated architecture.

This real-world example does not only show the technical aspects, but one can easily deduce the
economic implications of a federated approach - namely the simplification for small software companies
to enter the market and write applications for the automotive industry. Furthermore this approach
encourages the usage of pre-existing FLOSS software by ensuring the independence of applications and
decoupling the system safety requirements from the application safety integrity by providing adequate

isolation with respect to fault impact and propagation.

1 Introduction

As one of the first industries with stringent sys-
tem safety requirements, the avionics industry intro-
duced virtualization systems [1] for the deployment
of safety critical applications. In the avionic indus-
try these types of systems are called IMA (Integrated
Modular Avionic) systems [3, 4], and their usage is
known for a number of modern airplanes from fighter
jets to civil transportation.

Some of the main advantages of the IMA ap-
proach are the high level of modularity - allowing
to build systems that co-locate applications or run-
time environments of different safety integrity levels.
A further key issue is that the application develop-
ment is de-coupled from physical run-time system

constraints - basically a IMA application need not
know on which node of the system it may be de-
ployed. Further, and this is strongly echoed in all
relevant safety standards, a IMA like concept built
on strong temporal and spatial isolation allows for in-
dependence of monitoring and run-time/application,
including system level response to faults in partic-
ular partitions and thus guarantees for the environ-
ment that an application/run-time will be exposed
to. This later property is essential for composeabil-
ity - which is maybe one of the strongest driving
forces behind the IMA like system designs.

In other industries, the deployment of virtualized
systems has not yet been that popular but many do-
mains are moving slowly but surely towards this new
design paradigm where virtualization plays a central

role.

In example in machine tool industry a similar,
though not quite as clearly visible, trend can be ob-
served. Machine tools are traditionally built up of
major components that are from different vendors,
i.e. drives from vendor A, control system from ven-
dor B, etc. This led to the same composeability prob-
lems for systems that need to be certified as in the
avionics industry. The solution one can find in guid-
ing standards like IEC 62061 is that a certified com-
plex component can be treated as a low complexity
component (Clause 6.7.4.2.3) in the system compo-
sition thus significantly reducing certification efforts
(Clause 6.7.3.3) but without breaking the continuous
cross-checking of requirements fulfillment and design
match.

In order for deploying such an inte-
grated /virtualized software system one needs of
course a VMM (virtual machine monitor) of some
sort that handles the scheduling of the various in-
dependent applications. As the central software
module, which due to their central role must be im-
plemented conforming to the highest safety integrity
level, the design and implementation of these VMMs
gets a lot of attention. The proper design of ap-
plications running on top of a VMM - especially to
obtain a design that lends itself towards modular
certification - is a topic which has, in my opinion
been neglected. Only doing this right as well will
result in a high probability that application software
can be re-used without the need of re-certification
for a very long time. In this paper, I discuss some
of the problems I came across and present a design
of a simple but not unusual for the MCUs in the
automotive industry application to show some of the
traps and pitfalls, and how to avoid them.

2 Standards

As already mentioned in the introduction, the
avionic industry is the leading industry in the de-
ployment of integrated solutions. Therefore the ap-
plication specific standards naturally are avionic
standards [3, 4, ?]. From the functional safety side
of things the use of integrated approaches is backed
up by the DO178C [5].

What about other industries? - As this paper
focuses on the automotive sector, below attention
is focused on the guidance given by ISO 26262 as
the functional safety standard for automotive and
TEC 61508 as the generic functional safety standard.
Similar clauses can be found in standards in most

industries.

2.1 ISO 26262

The latest standard on functional safety that has
just been introduced into the automotive industry
is the ISO 26262 [6]. This is the first domain specific
standard on functional safety in this industry, and it
also gives guidance on the usage of integrated soft-
ware architectures. The most important parts here
is 1S026262-6, D2.2 - "Impact on shared resources”.
Although it allows some more dynamic mechanisms
than the ARINC standards, it mandates the same
properties (these properties will be discussed in sec-
tion 3) of the system and prefers the mechanisms also
used in ARINC653.

2.2 IEC 61508

IEC 61508 allows the use of pre-existing software
side by side with software developed according to
a safety standard. If the pre-existing software can
not be guaranteed to have properties equivalent to
a safety related development then the standard re-
quires appropriate evidence of non-interference. Fur-
ther IEC 61508 also mandates this in the case where
software of different safety integrity levels are to be
co-located on a single platform. Clauses 7.4.2.8 and
7.4.2.9 cover this aspect in IEC 61508-3 Ed2 2010.

A further aspect that is introduced in Clause
7.4.2.7 of the same standard is that where reason-
able self-monitoring should be provided on data and
control flow and the system shall be able to detect
and react to failures.

It is quite natural to cover these require-
ments by appropriate system level isolation meth-
ods (MMU,JOMMU) as well as process level sepa-
ration (address spaces) - but if one were to do this
based on a full featured operating system then this
OS would need to be at the highest safety integrity
level claimed - which makes reuse of COTS compo-
nents quite complex. This can be significantly sim-
plified if the separation properties are provided by a
relatively small and thus in principle certifiable hy-
pervisor.

The second noted aspect - monitoring and fault-
response - is covered in ARINC 653 by the health-
monitoring facilities. This allows to have an indepen-
dent instance that will respond to detected faults in
the system and thus provides some level of guaran-
teed fault response independent of the faulting unit
(OS or application).

3 ECU Design

As shown in the last section, there are a number of
standards in a variety of domains that support inte-
grated/partitioned architectures. To summarize the
most important principles all of these standards that
give guidance on how to reach independence of soft-
ware applications on the same hardware node the
three core principles are the same:

e separation in time (cyclic scheduling)
e separation in space (memory protection)

e independent communication (strict polling se-
mantics)

Depending on the standard they can be soft-
ened a little bit (e.g. ISO 26262 also talks about
other scheduling strategies than cyclic scheduling),
but even if other strategies are followed, it is nec-
essary to show the hard separation in time, which
of course is harder to show with a more complex
scheduling algorithm.

For this paper the only important thing is, that
all of these high level principles are provided by Xtra-
tuM. They can be seen as SACs (more on safety ap-
plication conditions in section 6) at the level of the
hardware node, that are fulfilled by XtratuM. The
more important issue for this paper are the issues
that arise at partition (application) level.

4 Standardized Interfaces

Developing applications for the long-term usage re-
lies on one crucial design element - the application
must use a well defined API that will not change for
a long time and is an accepted industrial standard.
This obvious pre-requisite for long-term reusability
of software is given in the automotive industry where
such a stable AP is specified in OSEK/VDX (7, 8, 9]
and extended by AUTOSAR [10].

Therefore to create an integrated architecture for
the automotive industry providing an OSEK/VDX
compliant interface to the applications is manda-
tory. This interface provides all generic functions
an application will need like task management (cre-
ation, scheduling, termination), communication (be-
tween tasks and with other applications), interrupt
and even handling, resource and time management
(alarms) as well as error handling. Having all those
elements well specified assures that an application
can be reused for a long time - essentially as long as

a run-time environment that provides this interface
is used.

5 Indicator Control Example

In order to test the approach I proposed in my the-
sis a relatively simple real-world problem had to be
found. This example is an indicator control, as de-
picted in 1. This figure really just shows the inputs
and outputs of the controller.

timer_virq
direct_ind_lever (left/right) set_direction_indicator (on/off)
indicator

car_speed control
emergency flasher (on/off) direc_ind_status(failed/ok)

- -

light (failed/ok) set_timer()
turn_angle (reverted) signal_exception() [-> healthmonitor]

FIGURE 1:

Ezample: Indicator Control

A general safety process roughly exhibits the fol-
lowing overall structure:

Define System (requirements)

|-) Perform System Hazard Analysis

! Assess risk of each hazard

Determine mitigation demands
(hazard reduction needs)

Specify SIL level for each safety

> related function

L Select suitable mitigation
methods/processes

L Do it (implement/integrate) and
justify it

FIGURE 2: Workflow of the safety process

The ideal safety process is a waterfall model - in
reality of course it is an iterative process at every
step.

The approach taken in the design and implemen-
tation of this simple example represents a subset of
the overall safety process and included the following
steps:

e do a naive high-level design of the problem

e perform a hazard analysis on this naive high
level design

e the output of the hazard analysis is used as
input to refine the design

e do a detailed design of the components of the
high level-design

e do a hazard analysis on the interfaces between
the components

6 Hazard Analysis

Designing an application as simple as an indicator
control seems trivial and one tends to think ”What
can possibly go wrong?”. The truth is, despite the
example being that simple it was not that hard to
find some weak spots. To get the hunt for problems
into a structured form, a HAZOP (Hazard and Op-
erability study) was performed on the naive design.

A HAZOP uses a set of generic keywords that
cover all deviations possible these are interpreted in

the specific context and allow a systematic scan for
flaws [?].

This HAZOP lead to the discovery of a number
of possible hazards that were not anticipated by the
original design and were very useful in refining the
naive design into the refined version of the high level
design.

Besides the real design flaws that were found,
a number of SACs (Safety Application Conditions)
had to be defined and have been listed. These SACs
specify the pre-conditions that have to be met, in
order to allow a safe operation of the application.

SACs are an important tool to allow reuse of
components (software and hardware) and to define
the environment this component can be used in.
They basically consist of restrictions due to

technical problems - e.g. situations were a clean
solution would need an unproportionally high
effort in time and money or were a clean
solution would result in a system that is

not usable due to size, power consumption,
...restrictions. An example of a technical
problem that has to be handled outside of the
software application in the indicator control ex-
ample is "If the battery is dying, it has to be
assured that vital elements of the vehicle - e.g.
the emergency flasher - function properly as
long as possible, while others can be taken out
of operation to save energy (e.g. the parking
assistant). This kind of energy control has to
happen on a vehicle wide level and can therefore
not be handled by the indicator control system.

”

necessary assumptions - e.g. assumptions that
had to be made at development time because
the hard facts were not available. In these cases
the terms for usage have to be communicated
to the user of the application via the SACs.
In the indicator control example, a SAC from
this category is ”The indicator control applica-
tion is occupies one OSEK partition. No other
application is allowed to be located in this par-
tition.”.

A safety application condition for a technical
problem could be simply to restrict a system in its
usage profile. If the overload stability of an OS is
not known or can not be reasonably assured then a
SAC may limit the OS load to a perceived ”safe”
value. This is akin to safety margins in other en-
gineering disciplines (like buildings) - by restricting
the system load to 30% CPU usage one gains a safety
margin for the unhandled cases”.

The second type of SAC is more specific to
generic software. In general safety related projects
start out with a system and an appropriate analy-
sis of the potential hazards related to this system.
In generic software we can’t always do that because
we don’t actually know the system. To mitigate
this one needs to make ”educated assumptions” and
document them in the form of SACs. and example
might be that one assumes that all memory of the
safety applications are statically allocated at applica-
tion launch and checked before the application goes
"hot” - the SAC now simply would state that this
assumption must fit the applications, if not then a
re-assessment is needed.

At this stage we got a final version of the high
level design that has been analyzed and is assumed to
exhibit residual safety flaws with an acceptably low
probability (assumed, because the HAZOP analysis
is a team effort, but due to having no team for my
thesis I had to do it on my own). Now a more de-
tailed look at the problem can be done in order to

create the detailed design.

7 Detailed Design

After the high level design has been completed a
more detailed design can be done. For more com-
plex applications the design could be broken down
multiple times, for a simple application like the in-
dicator control example the next level of design can
already be as detailed as an interface design of the
applications components.

Having the API and the communication between
components designed, again a risk and hazard anal-
ysis has to be performed in order to find out if miti-
gations for all possible hazards are in place. For the
indicator example a FMEA (failure mode and effects
analysis) on the interface has been performed. Let’s
for example look at the following simple function:

StatusType read_input(struct in_data *input);

Performing a FMEA on this function results in
the detection of the following possible hazards:
function: read_input e pointer == NULL
what happens: access to invalid mem-

ory, application terminated through

health monitor, health monitor is ex-
pected to signal error.
effect: restart of partition

mitigation: check for null pointer, re-

turn ERROR_CODE
e pointer == 0xDEAD (also known as

pointer to lala-land)

what happens: access to invalid mem-
ory, application terminated through
health monitor, health monitor is ex-
pected to signal error.

effect: restart of partition

mitigation: component is in undefined

state, internal mitigation not possi-
ble ==/ has to be handled by health

monitor.
e pointer points to valid address space, but
wrong data structure
effect: no detection by system

mitigation: extension of data structure
by unique magic number.

The result of this FMEA could turn out in vari-
ous ways. It could either show how all possible haz-
ards are handled after applying the mitigations. If it

hazards that are not handled by the mitigations, the
detailed design has to be redone in order to assure
safety.

8 Conclusion

While the overall process for a safety related appli-
cation is relatively complex the main issue is the
system level interaction and the dependencies. If
these dependencies can be minimized and the indi-
vidual functionalities isolated to a level where non-
interference can be assured (with reasonable proba-
bility) then the overall safety process ends up being
quite tractable - aside from it having significant pos-
itive effects on software quality and maintenance.

The method introduced here is efficient if a par-
titioned system forms the foundation - providing the
essential system level properties of

e temporal isolation
e spatial isolation

e side effect free communication

are provided. In the case of the OVERSEE plat-
form design, these system properties are conceptu-
ally provided by the XtratuM hypervisor. On top
of these core safety properties, it is quite simple to
define small, maintainable and safe applications for
automotive systems.

By following standard APIs (OSEK/VDX, AU-
TOSAR) a highly composeable system can be
achieved which exhibits strong safety properties.

9 Acknowledgments

This paper has been produced in the context of
the OVERSEE project (FP7-ICT-2009-4, Project ID
248333).

References
[1] John Rushby: Partitioning forequirements,
Mechanisms, and Assurance, 1999

[2] OVERSEE,
PROJECT.COM

2010, HTTP://OVERSEE-

[3] ARINC651 - Design Guidance for Integrated
Modular Avionics, Aeronatical Radio Inc., 1997

[4] ARINCG653 - Avionics Application Standard Soft-
ware Interface, Aeronatical Radio Inc., 2003

[6] DO-178C - Software Considerations in Airborne
Systems and Equipment Certification, RTCA Inc.
, 2011

[6] ISO 26262 - Road vehicles — Functional Safety,
International Organization for Standardization,
2011

[7] OSEK/VDX consortium,OSEK/VDX Home-
page, HTTP: / /OSEK-VDX.ORG/

[8] OSEK Operating System Specification 2.2.8,
2005, OSEK/VDX CONSORTIUM

[9) OSEK/VDX Communication Version 8.0.8,
2004, OSEK/VDX CONSORTIUM

[10] AUTOSAR - Automotive Open System Archi-
tecture, HTTP: / /AUTOSAR.ORG/

[11] System Safety: HAZOP and Software HAZOP |
Felix Redmill, Morris Chudleigh and James Cat-
mur, Wiley, 1999

