pBseq: probabilistic buffer-swapping
sequence locks

Nicholas Mc Guire <safety@osadl.org>

October 21, 2016

{OSADL

 Automation Development Lab eG

Outline 1OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire

Context - seqlocks and RT <safety@osadl

Alternatives

Outline

pBseq Context

Alternatives

Entropy harvesting

pBseq

Conclusions

Inherent
randomness

Conclusions

sequence locks overview {GSADL

pBseq:
probabilistic
buffer-
swapping
sequence
single writer: multiple readers: locks
Nicholas Mc
Guire
unsigned seq_start, seq_end; <sfetyCosad.
do { Outline
seq_start = seq; Context
datal = .. -5 locall = datal; Alternatives
data2 = ...; local2 = data2; pBseq
Seq = Seq + 2; Seq_end = Seq; Inherent

randomness

} while (seq_start != seq_end
|| seq_start % 2);

Conclusions

sequence locks properties {GSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks
. . . Nicholas Mc
@ Writer never blocks on reader (no writer starvation) Guire
) . . < safety@osadl.
@ Reader may spin on writer (but no reader starvation)
. . Outline
@ Multiple readers permitted :
Context
@ Single writer (multi-writer -> by locks) Altermatives
@ Writers preferred over readers pBseq

Inherent
Sequence locks have been in use since the late 2.5 kernel series, randomness

Conclusions

The seqlock problems for RT {GSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks
. Nicholas Mc
@ Reader retries are not bounded - even though generally Guire
< safety@osadl.
short
@ Anonymous locks do not permit boosting Outline
Context
@ Readers/writers can’t be boosted -> unbounded delays on _
) } Alternatives
writer preemption e
@ Long spinning readers -> cache impact Inherent

randomness

Conclusions

Current mitigation

@ Basic options

e Try to add owner concept to sequence locks

o Revert to boostable locks
@ 1st option would be complex and unnecessary for non-RT
@ 2nd is simple but limits scalability of RT

o write_seqlock: grabs the seqlock spin_lock (multiple writer
serialization)

o read_seqbegin: spin_lock(&sl->lock);
spin_unlock(&sl->lock); so it is bostable now.

No real mitigation in the current RT patch-set - the its more a
workaround.

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Alternative mitigation: replication {BsADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

@ Seqglocks are unbounded due to possible writer preemption ot M

Guire
< safety@osadl.

@ Mitigation: replicated data

@ Implementations:
e seqcount_latch (fast ktime and in latch_tree_OP)
e Suitable for non-atomic modifications

o Prime motivation: unconditional lookups e.g. NMI context

Outline
Context
Alternatives
pBseq
For the NMI case data duplication is sufficient. This also could inherent
solve some of the RT issues but its not a simple replacement randomness
(code-level) for seqlocks.

Conclusions

Concept of seqcount] latch {GsADL

pBseq:
probabilistic
buffer-
. . . swapping
@ Maintain replicated data - data[0]/datal[1] sequence
@ Redirect readers to stable copy Nicholas Mc
Guire
@ Use LSB of sequence to select data buffer <safety@osadl
@ Non-probabilistic approach - redirection is deterministic Outline
@ Retry probability is assumed to be negligible due to Context
preem ption Alternatives
pBseq

Worst-case: still unbounded - lockstep update/read erent
pOSSib|e randomness

Conclusions

Lockstep behavior on larger multi-core is actually possible since
cross-core delays can be quite large.

pBseq probabilistic buffer-swapping sequence

. {OSADL
locks - overview

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire

!,
data0[] datal[] data?[]] < safety@osadl.

bSCq seqO+=2 seql+=2 seq2+=2

Outline

Context

Sta_[‘tiseqzseq[n] Alternatives
Idata[]=data[] pBseq
Inherent
Chmk(seq[n]) randomness

Conclusions

V

Concept of pBseq {GsADL

pBseq:
probabilistic
buffer-
swapping
S
@ Maintain replicated data - datal]NUM_REPLICA|] N
@ Probabilistic approach - redirect readers to random copy P
@ Use inherent nondeterminism to select data copy o
utline
@ Retry probability is statistically bounded even in the .
tlght—|00p Alternatives

Data copying on the read-side - its more of an IPC than a pBseq
|0Ck Inherent

randomness

@ Worst-case: bounded - no lockstep update/read Conclusions

pBseq parameters

@ Number of replicas

@ Data array size

@ Treatment of index
e -> collision avoidance (seqcount_latch)
o -> lockstep avoidance

@ Memory model of architecture

e TSO: no rmb()/wmb() needed (no shared writable data)
e non-TSO: barriers needed

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Implementation on TSO systems {GsADL

Writer:

for (b = 0; b < NUM_REP; b++) {

}

p = &seq.bseq[bl;

p—>s++;

for (d = 0; d < D_SIZE; d++){
randbit=("randbit);
p—>datald] = ...;
randbit=("randbit);

}

p—>s++;

pBseq:
probabilistic
buffer-
swapping
. sequence
Reader: locks

Nicholas Mc
static unsigned int idx = 1; Guire
idx -= randbit: < safety@osadl.
do {

1p = &seq.b[(--idx)%NUM_REP];
lseq = 1lp->s;
for (d = 0; d < D_SIZE; d++){
ldata[d] = lp->datald]; pBseq
} Inherent
I‘a-ndbit=("ra_ndbit) ; randomness
} while (lsquQ | lseq!=1p—>s);CO"Cll‘SiOHS

Outline
Context

Alternatives

Implementation on non-TSO (ARM/PPC)

Failure rate is actually quite small (10E-7/call)
Memory barriers mandatory and expensive
Works - but no systematic testing yet

Performance issues and optimization open

Unclear if a barrier free version is actually possible

Not done yet - the distributions look more or less the same, but
there are rare failures if there is a barrier free mitigation is not
yet clear - still working on basics here...

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire

< safety@osadl.

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

The retry lockstep problem

@ Temporary lockstep behavior possible
@ Even short lock-stepping could have significant cache
side-effects

idle AMD Phenom 2, int array size=4, temporary lockstep behavior
le+08

sample 2 ———
sample2 ——

Lle+07 sample 3 —— 7

le+06
100000 K

10000 ¢

samples

1000 ¢

100 |

10

1

0 50 100 150 200 250 300

retry loops

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Mitigations solution-space {BsADL

pBseq:
probabilistic
buffer-
swapping
. . L. . sequence
@ Defined writer start conditions and inverted read access locks
direction Nicholas Mc
Guire
. . P . f @ dl
@ Defined writer start conditions and fixed offsets S
(seqcount_latch) Outline
@ Use of random index (symmetry-breaking) Soptes
L I Alternatives
°
arger replica arrays _—
@ Execution interleaving Inherent
randomness
@ System load —
onclusions

...and any combination of the above

Defined access direction comparison

samples

1e+08

1e+07

1e+06

100000

10000

1000

100

10

i7 8-core, cmp (~ick) with (++ich), idle system, data size=4

1e+08

i7 8-core, cmp (-idx) with (++idx), idle system, data size=4 - details

+iax

--idc

Nr retries

samples

1e+07

1e+06

100000

10000

1000

100

10

- i
VN - idx

Nr. retries

The distribution indicates that there are very long lockstep
sequences possible in tight-loop runs.

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Defined index offset comparison {GsADL

pBseq:
probabilistic
i7 8-core, cmp (--idx) with (--idx + 1), idle system, data size=4 buffer-
1le+08 swapping
sequence
1e+07 locks
10406 NICth.EIS Mc
Guire
100000 < safety@osadl.
0
2
g 10000 Outline
3
1000 Context
100 Alternatives
10 pBseq
. Inherent
0 randomness

Nr.retries Conclusions

@ unsigned int idx=1; -> Ip = &seq.bseq[(-idx)
@ unsigned int idx=0; -> Ip = &seq.bseq[(-idx + 1)

Non-determinism

@ Explicit random numbers

o Possible but too expensive
@ Uetilize the asynchronity of system

o Non-synchronized race on global var
@ Utilize the history of the system

o Static declaration index variable

A reliable entropy source suitable for low-level algorithms to
ensure symetry breaking is not only usable for pBseq/pWCS
but is a pre-requisite to bring probabilistic solutions to low-level
algorithms in general.

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire

< safety@osadl.

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - randbits {BsADL

pBseq:

probabilistic
Core of the essed.c buffer-
swapping
sequence
. . . lock
unsigned int coin; oce
Nicholas Mc
Guire
< safety@osadl.
Thread A Thread B i
unsigned int draw[2]; @il
while(active){ drwa[0]=coin; Context
COin=~COin; draw [1] =Coin; Alternatives
if (draw[0] <draw[1]) [
s — . Inh t
inbuf | - (1 <<pOS) ’ r:nz:)er:ness
else Conclusions

inbuf&="(1<<pos);
pos++;

Entropy harvesting - state history

< static unsigned int idx=1;

> unsigned int idx=1;

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire

< safety@osadl.

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - state history

samples

1e+08

1e+07

1e+06

100000

10000

1000

100

10

1

static unsigned int idx=1;

unsigned int idx=1;

Xeon-E7-8870, static vs reinitialized 1, load, array size=4

bleaur
\‘ bseqvg
\
\
\
\
\
\
\\
\
\
AN
\
AN
\\\ b ~
4 6 g8 10 12 14 16

N retries

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Entropy harvesting - state history

samples

1e+08

1e+07

1e+06

100000

10000

1000

100

10

1

static unsigned int idx=1;

unsigned int idx=1;

Xeon-E7-8870, static vs reinitialized 1, load, array size=4

bleqvf ——
\\ bseqvg ———
N\
\
W
\
\
N\
\
\
\
AN
N
ANN
N\
\\ h N
AN
0 2 4 6 8 10 12 14 16
Nr. retries

samples

1e+08

1e+07

1e+06

100000

10000

1000

100

10

1

i3-2350M, static vs re-initialized 1, idle system, array size=4

bsedqvirunl ——
bsequf run 2
bseqvf run 3
bseavf run 4

bsequf run 9
bseqvf run 10

bseqvg fun 1
bseqvg run 2
bseqvg run 3
bseqvg run 4
bseqvg run 5
bseqg run 6
bseqvg run 7
bseqvg run 8
bseqvg run 9
bseavg run 10

6 8 10
Nr. retries

{OSADL

swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Entropy insertion points

int idx <-—---- idx = randbit;
<=—==== static int idx = O;
{===== idx -= randbit;

do {

1lp = &seq.bseq[(--idx)’NUM_REPLICA]; <--- +randbit
lseq = 1lp->s;
for (d = 0; d < DATA_SIZE; d++) {
ldatal[d] = lp->datald];
Cmmmm randbit=("randbit);

D ittt randbit=("randbit);
} while (1seq%2 || lseq != 1lp->s);

{OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Key problem - where to insert entropy 1BSADL

pBseq:
probabilistic
buffer-
swapping
sequence

Xeon E7 8870, CPU 0 -> 3,11,31,78, index method cmp, array size 128 locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives

pBseq

Inherent
randomness

Conclusions

Key problem - where to insert entropy 1BSADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Xeon E7 8870, CPU 0 -> 3,11,31,78, index method cmp, array size 128 Xeon E7 8870, CPU 0 -> 3, idx distribution for array size 128

Nicholas Mc
Guire
< safety@osadl.
Outline
Context

Alternatives

1
indexing variant pBseq

Inherent
randomness

Conclusions

Looking at the retrydistribution in conjunction with the index
distribution

Worst-case: minimal delays + idle system

work loop impact, loadd, i3-3250M int array size=4,32

e ‘\\ “4_joad” ——
= 1\, 132 load4” ——
\

100 work loop

{OSADL

swapping
sequence
locks

Nicholas Mc
Guire
< safety@osadl.
Outline
Context
Alternatives
pBseq

Inherent
randomness

Conclusions

Worst-case: minimal delays + idle system {BsADL

pBseq:
probabilistic
buffer-
swapping
sequence
locks

Sdle vs load distribution on & 13-2350M int srray size 4

work loop impact, load4, i3-3250M int array size=4,32 .
e — Nicholas Mc
Guire
< safety@osadl.

SN oad ——
= 1\, 132 load4” ——
\

Outline
Context
Alternatives

pBseq

100 work loop

Inherent
randomness

Conclusions

Exactly one worst case scenario -> exhaustive testing possible 7

Current "best” code 1OSADL

pBseq:
probabilistic
buffer-
swapping
sequence
lock
static unsigned int idx=1; . ocks
for (n = 1; n <= N; ++n) { N'C'g;SeMC
idx += randbit; < safety@osadl.
do { _
1p = &seq.bseq[(--idx)%NUM_REPLICA]; (il
1S€q = 1p->s; Context
for (d = O; d < DATA_SIZE, d++) { Alternatives
ldata[d] = lp->datald]; pBseq
} Inherent
randbit=("randbit); randomness

} while (lseq%2 | 1S€q I= lp—>S); Conclusions

Properties of pBseq {GsADL

pBseq:
probabilistic
buffer-
swapping
sequence
. locks
@ Freshness: as good as spinlocks/mutexes
Nicholas Mc
H . H H Guire
o Context separation: reader/writer lock-free/wait-free et e
always
.. . Outline
@ Performance: Statistically bounded retries Coment
ontex!
° WorSt Case: Alternatives
o ldle-system SEset
Tlght-IOOp Inherent
Sa” data randomness

e 6 o

Conclusions

-> exhaustive testable worst case

Conclusions 1OSADL

pBseq:

@ Related: pWCS and similarities with sequcount_latch probabilistic

@ pBseq is more of an IPC mechanism than a lock (copying s::g.fa:g
semantics) N

@ Exhaustive testing of worst-case possible Nicholas Mc

@ Simple inherent entropy harvesting is usable in low-level el
algorithms e

@ Symmetry breaking can be implemented in a highly Context
reliable manner -> robust guarantees on retries Alternatives

@ Using inherent non-determinism in a systematic form EBec

Inherent
randomness

@ The code sensitivity to very small changes is large - e
making the evaluation of the code very hard.

(code wise) is still an open issue

We think its worth digging deeper - synchronization based on
robust statistical properties may be a scalable alternative to
deterministic locking.

	Outline
	Context
	Alternatives
	pBseq
	Inherent randomness
	Conclusions

