
pBseq: probabilistic buffer-swapping
sequence locks

Nicholas Mc Guire <safety@osadl.org>

October 21, 2016

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Outline

Context - seqlocks and RT

Alternatives

pBseq

Entropy harvesting

Conclusions

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

sequence locks overview

single writer: multiple readers:

unsigned seq_start, seq_end;

do {

seq_start = seq;

data1 = ...; local1 = data1;

data2 = ...; local2 = data2;

seq = seq + 2; seq_end = seq;

} while (seq_start != seq_end

|| seq_start % 2);

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

sequence locks properties

Writer never blocks on reader (no writer starvation)

Reader may spin on writer (but no reader starvation)

Multiple readers permitted

Single writer (multi-writer -> by locks)

Writers preferred over readers

Sequence locks have been in use since the late 2.5 kernel series,

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

The seqlock problems for RT

Reader retries are not bounded - even though generally
short

Anonymous locks do not permit boosting

Readers/writers can’t be boosted -> unbounded delays on
writer preemption

Long spinning readers -> cache impact

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Current mitigation

Basic options

Try to add owner concept to sequence locks
Revert to boostable locks

1st option would be complex and unnecessary for non-RT

2nd is simple but limits scalability of RT

write seqlock: grabs the seqlock spin lock (multiple writer
serialization)
read seqbegin: spin lock(&sl->lock);
spin unlock(&sl->lock); so it is bostable now.

No real mitigation in the current RT patch-set - the its more a
workaround.

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Alternative mitigation: replication

SeqLocks are unbounded due to possible writer preemption

Mitigation: replicated data

Implementations:

seqcount latch (fast ktime and in latch tree OP)
Suitable for non-atomic modifications
Prime motivation: unconditional lookups e.g. NMI context

For the NMI case data duplication is sufficient. This also could
solve some of the RT issues but its not a simple replacement
(code-level) for seqlocks.

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Concept of seqcount] latch

Maintain replicated data - data[0]/data[1]

Redirect readers to stable copy

Use LSB of sequence to select data buffer

Non-probabilistic approach - redirection is deterministic

Retry probability is assumed to be negligible due to
preemption

Worst-case: still unbounded - lockstep update/read
possible

Lockstep behavior on larger multi-core is actually possible since
cross-core delays can be quite large.

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

pBseq probabilistic buffer-swapping sequence
locks - overview

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Concept of pBseq

Maintain replicated data - data[NUM REPLICA]

Probabilistic approach - redirect readers to random copy

Use inherent nondeterminism to select data copy

Retry probability is statistically bounded even in the
tight-loop

Data copying on the read-side - its more of an IPC than a
lock

Worst-case: bounded - no lockstep update/read

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

pBseq parameters

Number of replicas

Data array size

Treatment of index

-> collision avoidance (seqcount latch)
-> lockstep avoidance

Memory model of architecture

TSO: no rmb()/wmb() needed (no shared writable data)
non-TSO: barriers needed

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Implementation on TSO systems

Writer: Reader:

static unsigned int idx = 1;

for (b = 0; b < NUM_REP; b++) { idx -= randbit;

p = &seq.bseq[b]; do {

p->s++; lp = &seq.b[(--idx)%NUM_REP];

for (d = 0; d < D_SIZE; d++){ lseq = lp->s;

randbit=(~randbit); for (d = 0; d < D_SIZE; d++){

p->data[d] = ...; ldata[d] = lp->data[d];

randbit=(~randbit); }

} randbit=(~randbit);

p->s++; } while (lseq%2 || lseq!=lp->s);

}

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Implementation on non-TSO (ARM/PPC)

Failure rate is actually quite small (10E-7/call)

Memory barriers mandatory and expensive

Works - but no systematic testing yet

Performance issues and optimization open

Unclear if a barrier free version is actually possible

Not done yet - the distributions look more or less the same, but
there are rare failures if there is a barrier free mitigation is not
yet clear - still working on basics here...

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

The retry lockstep problem

Temporary lockstep behavior possible
Even short lock-stepping could have significant cache
side-effects

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Mitigations solution-space

Defined writer start conditions and inverted read access
direction

Defined writer start conditions and fixed offsets
(seqcount latch)

Use of random index (symmetry-breaking)

Larger replica arrays

Execution interleaving

System load

...and any combination of the above

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Defined access direction comparison

The distribution indicates that there are very long lockstep
sequences possible in tight-loop runs.

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Defined index offset comparison

unsigned int idx=1; -> lp = &seq.bseq[(–idx)

unsigned int idx=0; -> lp = &seq.bseq[(–idx + 1)

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Non-determinism

Explicit random numbers

Possible but too expensive

Utilize the asynchronity of system

Non-synchronized race on global var

Utilize the history of the system

Static declaration index variable

A reliable entropy source suitable for low-level algorithms to
ensure symetry breaking is not only usable for pBseq/pWCS
but is a pre-requisite to bring probabilistic solutions to low-level
algorithms in general.

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - randbits

Core of the essed.c

unsigned int coin;

Thread A Thread B

unsigned int draw[2];

while(active){ drwa[0]=coin;

coin=~coin; draw[1]=coin;

if(draw[0]<draw[1])

inbuf|=(1<<pos);

else

inbuf&=~(1<<pos);

pos++;

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - state history

< static unsigned int idx=1;

> unsigned int idx=1;

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - state history

< static unsigned int idx=1;

> unsigned int idx=1;

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy harvesting - state history

< static unsigned int idx=1;

> unsigned int idx=1;

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Entropy insertion points

int idx <----- idx = randbit;

<----- static int idx = 0;

<----- idx -= randbit;

do {

lp = &seq.bseq[(--idx)%NUM_REPLICA]; <--- +randbit

lseq = lp->s;

for (d = 0; d < DATA_SIZE; d++) {

ldata[d] = lp->data[d];

<--------------------randbit=(~randbit);

}

<----------------------------randbit=(~randbit);

} while (lseq%2 || lseq != lp->s);

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Key problem - where to insert entropy

Looking at the retrydistribution in conjunction with the index
distribution

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Key problem - where to insert entropy

Looking at the retrydistribution in conjunction with the index
distribution

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Worst-case: minimal delays + idle system

Exactly one worst case scenario -> exhaustive testing possible ?

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Worst-case: minimal delays + idle system

Exactly one worst case scenario -> exhaustive testing possible ?

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Current ”best” code

static unsigned int idx=1;

for (n = 1; n <= N; ++n) {

idx += randbit;

do {

lp = &seq.bseq[(--idx)%NUM_REPLICA];

lseq = lp->s;

for (d = 0; d < DATA_SIZE; d++) {

ldata[d] = lp->data[d];

}

randbit=(~randbit);

} while (lseq%2 || lseq != lp->s);

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Properties of pBseq

Freshness: as good as spinlocks/mutexes

Context separation: reader/writer lock-free/wait-free
always

Performance: Statistically bounded retries

Worst Case:

Idle-system
Tight-loop
Sall data
-> exhaustive testable worst case

pBseq:
probabilistic

buffer-
swapping
sequence

locks

Nicholas Mc
Guire

<safety@osadl.org>

Outline

Context

Alternatives

pBseq

Inherent
randomness

Conclusions

Conclusions

Related: pWCS and similarities with sequcount latch

pBseq is more of an IPC mechanism than a lock (copying
semantics)

Exhaustive testing of worst-case possible

Simple inherent entropy harvesting is usable in low-level
algorithms

Symmetry breaking can be implemented in a highly
reliable manner -> robust guarantees on retries

Using inherent non-determinism in a systematic form
(code wise) is still an open issue

The code sensitivity to very small changes is large -
making the evaluation of the code very hard.

We think its worth digging deeper - synchronization based on
robust statistical properties may be a scalable alternative to
deterministic locking.

	Outline
	Context
	Alternatives
	pBseq
	Inherent randomness
	Conclusions

